

WATER IN THE ATMOSPHERE AND THE ROLE FOR CLIMATE

Part 2: Water vapor distribution in the atmosphere

WS 22/23 I CHRISTIAN ROLF

1. Introduction into units and definitions

2. Water vapor distribution in the atmosphere

- 3. Cloud formation (water and ice clouds)
- 4. Water cycle
- 5. Water and climate feedback
- 6. Measurement of water in the atmosphere

2. Water vapor distribution in the atmosphere

- Horizontal Distribution of Water vapor
- Lifting Condensation level
- Dry/Moist Adiabatic lapse rate
- Equivalent Potential Temperature
- Temperature and humidity dependence of rel. humidity
- Vertical Distribution of Water vapor
- Saturation mixing ratio at the tropical tropopause
- Vertical Tropical tape recorder
- Lower stratosphere horizontal tape recorder
- Methane oxidation in the upper stratosphere

DISTRIBUTION OF WATER VAPOR

- Large range of water vapor mixing ratios in the atmosphere (4 orders of magnitude)
- Temperature driven differences of water vapor

at ground

- tropics \leftrightarrow poles
- Summer / winter season
- Water vapor driven differences (sources)
 - Deserts

Ground level

DISTRIBUTION OF WATER VAPOR

 Range of water vapor mixing ratios @ 200hPa smaller compared to ground

- Still large difference between Tropics and Pole regions
 - Difference
 Troposphere /
 Stratosphere

200 hPa level

ABSOLUT HUMIDITY

absHumidity (g/m3) @ 200hPa level, summer, 01.07.2020

· 10²

- 10¹

 10_{-1} $10_{$

- 10-2

 10^{-3}

10²

101

10[°] 10^{°-1} absHumidity (g/m3)

· 10⁻²

10-3

absHumidity (g/m3) @ 200hPa level, winter, 01.01.2020

INTEGRATED WATER VAPOR

60.0

- 52.5

- 45.0

37.5 (E 30.0 M

22.5

- 15.0

- 7.5

0.0

60.0

- 52.5

- 45.0

37.5 E 30.0 M

22.5

- 15.0

- 7.5

0.0

SERG

JGU

IWV (mm) winter, 01.01.2020

- Important quantity for the water cycle and total moisture transport
- Similar structures as mixing ratios at low levels
- Higher levels do not play large role

JÜLICH

Forschungszentrum

IWV (mm) summer, 01.07.2020

DEWPOINT TEMPERATURE

Dewpoint (K) @ ground level, winter, 01.01.2020

 $\begin{array}{c} -300\\ -285\\ -270\\ -255 \\ \end{array}$ $\begin{array}{c} +240 \\ \\ -225\\ -240 \\ \\ \\ -225\\ \end{array}$ $\begin{array}{c} +210\\ -195\\ \\ -195\\ \\ 180\end{array}$

Dewpoint (K) @ ground level, summer, 01.07.2020

Dewpoint (K) @ 200hPa level, winter, 01.01.2020

Dewpoint (K) @ 200hPa level, summer, 01.07.2020

FROSTPOINT TEMPERATURE

Frostpoint (K) @ ground level, winter, 01.01.2020

Frostpoint (K) @ 200hPa level, winter, 01.01.2020

300

- 285

270

- 255 🖌

- 240 - 240 -Frostpoint (

210

195

180

Frostpoint (K) @ ground level, summer, 01.07.2020

Frostpoint (K) @ 200hPa level, summer, 01.07.2020

RELATIVE HUMIDITY WRT. ICE

RHi (%) @ ground level, summer, 01.07.2020

RHi (%) @ 200hPa level, winter, 01.01.2020

Ν

RHi (%) @ 200hPa level, summer, 01.07.2020

i vi sonungszenti um

RELATIVE HUMIDITY WRT. WATER

RHw (%) @ ground level, winter, 01.01.2020

RHw (%) @ 200hPa level, winter, 01.01.2020

1	Ē		
	-	135	
	-	120	
	-	105	
	-	90	
	-	75	(%) M
	-	60	RH
	-	45	
	-	30	
	_	15	

- 135

- 120

105

90

75

60

45

- 30 - 15

0

RHw (%)

RHw (%) @ ground level, summer, 01.07.2020 - 135 - 120 105 90 75 60 45 - 30 - 15 0

RHw (%) @ 200hPa level, summer, 01.07.2020

RHw (%)

• ____

2. Water vapor distribution in the atmosphere

- Horizontal Distribution of Water vapor
- Lifting Condensation level
- Dry/Moist Adiabatic lapse rate
- Equivalent Potential Temperature
- Temperature and humidity dependence of rel. humidity
- Vertical Distribution of Water vapor
- Saturation mixing ratio at the tropical tropopause
- Vertical Tropical tape recorder
- Lower stratosphere horizontal tape recorder
- Methane oxidation in the upper stratosphere

LIFTING CONDENSATION LEVEL

Atmospheric water vapour is characterized by its partial pressure e, and its mass mixing ratio:

$$r = \frac{m_v}{m_d} = \frac{\rho_v}{\rho_d} = \epsilon \frac{e}{p - e} \approx \epsilon \frac{e}{p}$$

Saturated pressure ratio depends exponentially on temperature (Clausius-Clapeyron law). Empirical fits (T in K):

$$e_{sw} \approx 611. e^{\frac{L_v}{R_v} \cdot (\frac{1}{T_0} - \frac{1}{T})}$$

$$r_{s} = \epsilon \frac{e_{sw}}{p - e_{sw}} \approx \epsilon \frac{e_{sw}}{p}$$

LCL (lifting condensation level): condensation level of parcels lifted from the ground

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

JGU

2. Water vapor distribution in the atmosphere

- Horizontal Distribution of Water vapor
- Lifting Condensation level
- Dry/Moist Adiabatic lapse rate
- Equivalent Potential Temperature
- Temperature and humidity dependence of rel. humidity
- Vertical Distribution of Water vapor
- Saturation mixing ratio at the tropical tropopause
- Vertical Tropical tape recorder
- Lower stratosphere horizontal tape recorder
- Methane oxidation in the upper stratosphere

DRY ADIABATIC LAPSE RATE

MOIST ADIABATIC LAPSE RATE

(from Meteorology: Understanding the Atmosphere)

2. Water vapor distribution in the atmosphere

- Horizontal Distribution of Water vapor
- Lifting Condensation level
- Dry/Moist Adiabatic lapse rate
- Equivalent Potential Temperature
- Temperature and humidity dependence of rel. humidity
- Vertical Distribution of Water vapor
- Saturation mixing ratio at the tropical tropopause
- Vertical Tropical tape recorder
- Lower stratosphere horizontal tape recorder
- Methane oxidation in the upper stratosphere

EQUIVALENT POTENTIAL TEMPERATURE

 $\theta = T\left(\frac{p_0}{n}\right)^{\kappa_d/c_p}$

Potential temperature:

 c_p : Specific heat capacity at constant pressure ($c_p \simeq 1004 J K^{-1} kg^{-1}$, dry air) R_d : Gas konstant ($R \simeq 287 J K^{-1} kg^{-1}$)

• Equivalent potential temperature:

 $c_p \approx c_p + r_t c_{pw}$

$$\theta_e = T\left(\frac{p_0}{p}\right)^{R_d/(c_p + r_t c_{pw})} RH_w^{-r_v R_v/(c_p + r_t c_{pw})} \exp\left[\frac{l_v r_v}{(c_p + r_t c_{pw})T}\right] \approx \theta \cdot \exp\left(\frac{l_v r_v}{c_p T}\right)$$

 c_{pw} : Specific heat capacity at constant pressure $(c_{pw} \simeq 4184 J K^{-1} kg^{-1}, water)$ R_v : Gas konstant of water vapor $(R_v \simeq 462 J K^{-1} kg^{-1})$ $r_{v,t}$: Mixing ratio of total $(t) \land vapor (v)$ of water RH_w : relative humidity with respect i water l_v : Latent heat of vaporization

EQUIVALENT POTENTIAL TEMPERATURE

FIGURE 4.9. Climatological atmospheric temperature *T* (dashed), potential temperature θ (solid), and moist potential temperature θ_e (dotted) as a function of pressure, averaged over the tropical belt ±30°

Marshall & Plumb: Atmosphere, Ocean and Climate Dynamics

EQ. POT. TEMP. (NORMAND'S RULE)

 $\theta \quad \begin{array}{l} \text{Conserved for } \mathrm{dry} \\ \mathrm{adiabatic \ motions} \end{array}$

- θ_e Conserved for saturated adiabatic motions
- w_s saturation mixing ratio crossing T_d at surface pressure

Fig. 3.11 Illustration of Normand's rule on the skew $T - \ln p$ chart. The orange lines are isotherms. The method for determining the wet-bulb temperature (T_w) and the wet-bulb potential temperature (θ_w) of an air parcel with temperature T and dew point T_d at pressure p is illustrated. LCL denotes the lifting condensation level of this air parcel.

from Wallace and Hobbs

Forschungszentrum

JOHANNES GUTENBERG UNIVERSITÄT MAINZ JGU

LAPSE RATE DEPENDENCE ON TEMP.

- Dry adiabatic lapse rate is constant 10°C/km.
- Moist adiabatic lapse rate is NOT a constant. It depends on the temperature of saturated air parcel.
- The higher the air temperature, the smaller the moist adiabatic lapse rate.
- When warm, saturated air cools, it causes more condensation (and more latent heat release) than for cold, saturated air.

2. Water vapor distribution in the atmosphere

- Horizontal Distribution of Water vapor
- Lifting Condensation level
- Dry/Moist Adiabatic lapse rate
- Equivalent Potential Temperature
- Temperature and humidity dependence of rel. humidity
- Vertical Distribution of Water vapor
- Saturation mixing ratio at the tropical tropopause
- Vertical Tropical tape recorder
- Lower stratosphere horizontal tape recorder
- Methane oxidation in the upper stratosphere

TEMPERATURE AND HUMIDITY DEPENDENCE OF RH

Definition of relative humdity:

Relative variation of rh: $drh da dq_s$

 $rh = \frac{e}{e_s} \approx \frac{q}{q_s}$ with definition of specific humidity $q \approx \epsilon \frac{e}{p}$ $\frac{drh}{rh} = \frac{dq}{q} - \frac{dq_s}{q_s}$

Relative variation of q_s:

 $\frac{dq_s}{q_s} = \frac{de_s}{e_s} - \frac{dp}{p} \quad \stackrel{\text{Assume}}{\stackrel{\text{!isobar!}}{\text{!isobar!}} \quad \Rightarrow \frac{dq_s}{q_s} = \frac{de_s}{e_s}$

Clausius-Claperon-Eq.:

$$\frac{de_s}{e_s} = \left(\frac{L}{R_v T}\right) \frac{dT}{T}$$

For tempature range T = 260-285K, using L_v =2500 J/g and R_v =466.5J/kg/K

 $L/R_v T = 18.9$

$$\frac{\Delta rh}{rh} = \frac{\Delta q}{q} - 19 \frac{\Delta T}{T}$$

TEMPERATURE AND HUMIDITY DEPENDENCE OF RH

Midlatitudes ΔRH due to ΔT

Temperature dependence

Tropics ΔRH due to Δq

Tranport dependence

Importance of the dynamics and the water vapor transport rather than temperature

HUMIDITY IN THE FREE TROPOSPHERE

- Dry zones below 15%; deserts are dry all year through
- Moist regions follows the ITCZ seasonal migration and the monsoon
- Is the seasonal mean well suited to described RH in the troposphere ?

2. Water vapor distribution in the atmosphere

- Horizontal Distribution of Water vapor
- Lifting Condensation level
- Dry/Moist Adiabatic lapse rate
- Equivalent Potential Temperature
- Temperature and humidity dependence of rel. humidity
- Vertical Distribution of Water vapor
- Saturation mixing ratio at the tropical tropopause
- Vertical Tropical tape recorder
- Lower stratosphere horizontal tape recorder
- Methane oxidation in the upper stratosphere

VERTICAL DISTRIBUTION OF WATER VAPOR

- Vertical distribution of water vapor in the atmosphere strongly (exponentially) dependent on temperature.
- Large difference between Troposphere (moist) and Stratosphere (dry); four order of magnitude between the surface and the tropical tropopause.
- Dry conditions in the winter pole stratosphere (dehydration due to low temperatures in the polar vortex)
- Dry conditions in the tropical lower stratosphere (dehydration due to cooling by convection)
 Page 27

RELATIVE HUMIDITY WRT. WATER

RELATIVE HUMIDITY WRT. ICE

VERTICAL WATER VAPOR DISTRIBUTION

Water vapour drops to very low values (3-4 ppmv, 2-3 mg/kg) at the **tropical** tropopause due to cold point near 190K.

2. Water vapor distribution in the atmosphere

- Horizontal Distribution of Water vapor
- Lifting Condensation level
- Dry/Moist Adiabatic lapse rate
- Equivalent Potential Temperature
- Temperature and humidity dependence of rel. humidity
- Vertical Distribution of Water vapor
- Saturation mixing ratio at the tropical tropopause
- Vertical Tropical tape recorder
- Lower stratosphere horizontal tape recorder
- Methane oxidation in the upper stratosphere

BREWER-DOBSON CIRCULATION

The B-D circulation represents Lagrangian-mean motion in the stratosphere and mesosphere from the tropics into polar regions.

Tropical tropopause layer (TTL) as an intermediate region between troposphere governed by convection and stratosphere governed by the Brewer -Dobson circulation (Highwood & Hoskins, 1998)

Boenisch et al., ACP, 2011

SATURATION MIXING RATIO AT THE TROPICAL TROPOPAUSE

Volume mixing ratio near 3 ppmv at 100hPa and 190K. Sensitivity to temperature is 0.5 ppmv K⁻¹

SATURATION MIXING RATIO AT THE TROPICAL TROPOPAUSE

2. Water vapor distribution in the atmosphere

- Horizontal Distribution of Water vapor
- Lifting Condensation level
- Dry/Moist Adiabatic lapse rate
- Equivalent Potential Temperature
- Temperature and humidity dependence of rel. humidity
- Vertical Distribution of Water vapor
- Saturation mixing ratio at the tropical tropopause
- Vertical Tropical tape recorder
- Lower stratosphere horizontal tape recorder
- Methane oxidation in the upper stratosphere

VERITCAL TROPICAL TAPE RECORDER

Nominal stratospheric values of water vapor set by the tropical cold point temperature!

TROPICAL WATER VAPOR VS. TEMPERATURE

Annual cycle in the entry value of water vapor due to an annual cycle in tropical cold point (or near tropopause temperatures).

2. Water vapor distribution in the atmosphere

- Horizontal Distribution of Water vapor
- Lifting Condensation level
- Dry/Moist Adiabatic lapse rate
- Equivalent Potential Temperature
- Temperature and humidity dependence of rel. humidity
- Vertical Distribution of Water vapor
- Saturation mixing ratio at the tropical tropopause
- Vertical Tropical tape recorder
- Lower stratosphere horizontal tape recorder
- Methane oxidation in the upper stratosphere

LOWER STRATOSPHERE HORIZONTAL TAPE RECORDER

quasi-horizontal transport in lower stratosphere, approximately following 400 K isentrope

3 years from MLS observations

JG

Forschungszentrum

2. Water vapor distribution in the atmosphere

- Horizontal Distribution of Water vapor
- Lifting Condensation level
- Dry/Moist Adiabatic lapse rate
- Equivalent Potential Temperature
- Temperature and humidity dependence of rel. humidity
- Vertical Distribution of Water vapor
- Saturation mixing ratio at the tropical tropopause
- Vertical Tropical tape recorder
- Lower stratosphere horizontal tape recorder
- Methane oxidation in the upper stratosphere

WATER VAPOR IN THE UPPER STRATOSPHERE

- Satellite observations show increase of water vapor mixing ratio with altitude.
- In the mesophere, there is photolysis of water vapor, so the vertical gradient reverses.

Noel et al., 2018

METHANE OXIDATION

Noel et al., 2018

METHANE OXIDATION

Figure 3. Diagram of the methane oxidation chain of photochemical reactions.

Methane is destroyed by two mechanisms in the stratosphere:

 $\begin{array}{c} \mathsf{CH}_4 + \mathsf{OH} \xrightarrow{} \mathsf{CH}_3 + \mathsf{H}_2\mathsf{O} \\ \mathsf{CH}_4 + \mathsf{O}(^1\mathsf{D}) \xrightarrow{} \mathsf{CH}_3 + \mathsf{OH} \end{array}$

Net: $CH_4 + 2O_2 \rightarrow 2H_2O + CO_2$.

 $[H_2O] + 2[CH_4] = constant$

Sum of volume mixing ratios $[H_2O] + 2[CH_4]$, referred to as potential water (PW), is expected to be roughly conserved following a stratospheric parcel.

LeTexier et al, 1988

METHANE OXIDATION

LeTexier et al, 1988

How many water molecules come from the destruction of 1 methane molecule as a function of latitude/altitude.

VERTICAL DISTRIBUTION OF WATER VAPOR IN THE STRATOSPHERE

JÜLICH

Forschungszentrum

JGU